| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elz | 
							 |-  ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							andi | 
							 |-  ( ( N e. RR /\ ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) <-> ( ( N e. RR /\ ( N = 0 \/ N e. NN ) ) \/ ( N e. RR /\ -u N e. NN ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-3or | 
							 |-  ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi2i | 
							 |-  ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( ( N = 0 \/ N e. NN ) \/ -u N e. NN ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nn0re | 
							 |-  ( N e. NN0 -> N e. RR )  | 
						
						
							| 6 | 
							
								5
							 | 
							pm4.71ri | 
							 |-  ( N e. NN0 <-> ( N e. RR /\ N e. NN0 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elnn0 | 
							 |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							orcom | 
							 |-  ( ( N e. NN \/ N = 0 ) <-> ( N = 0 \/ N e. NN ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							bitri | 
							 |-  ( N e. NN0 <-> ( N = 0 \/ N e. NN ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi2i | 
							 |-  ( ( N e. RR /\ N e. NN0 ) <-> ( N e. RR /\ ( N = 0 \/ N e. NN ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							bitri | 
							 |-  ( N e. NN0 <-> ( N e. RR /\ ( N = 0 \/ N e. NN ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							orbi1i | 
							 |-  ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) <-> ( ( N e. RR /\ ( N = 0 \/ N e. NN ) ) \/ ( N e. RR /\ -u N e. NN ) ) )  | 
						
						
							| 13 | 
							
								2 4 12
							 | 
							3bitr4i | 
							 |-  ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							bitri | 
							 |-  ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) )  |