Step |
Hyp |
Ref |
Expression |
1 |
|
elz |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
2 |
|
andi |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ∨ - 𝑁 ∈ ℕ ) ) ↔ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
3 |
|
df-3or |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ∨ - 𝑁 ∈ ℕ ) ) |
4 |
3
|
anbi2i |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℝ ∧ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ∨ - 𝑁 ∈ ℕ ) ) ) |
5 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
6 |
5
|
pm4.71ri |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ) |
7 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
8 |
|
orcom |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) |
9 |
7 8
|
bitri |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) |
10 |
9
|
anbi2i |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) ) |
11 |
6 10
|
bitri |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) ) |
12 |
11
|
orbi1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ↔ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ) ) ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
13 |
2 4 12
|
3bitr4i |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
14 |
1 13
|
bitri |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |