| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elz | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 2 |  | andi | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( ( 𝑁  =  0  ∨  𝑁  ∈  ℕ )  ∨  - 𝑁  ∈  ℕ ) )  ↔  ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ ) )  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 3 |  | df-3or | ⊢ ( ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ )  ↔  ( ( 𝑁  =  0  ∨  𝑁  ∈  ℕ )  ∨  - 𝑁  ∈  ℕ ) ) | 
						
							| 4 | 3 | anbi2i | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) )  ↔  ( 𝑁  ∈  ℝ  ∧  ( ( 𝑁  =  0  ∨  𝑁  ∈  ℕ )  ∨  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 5 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 6 | 5 | pm4.71ri | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 7 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 8 |  | orcom | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  ↔  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ ) ) | 
						
							| 10 | 9 | anbi2i | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑁  ∈  ℕ0 )  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ ) ) ) | 
						
							| 11 | 6 10 | bitri | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ ) ) ) | 
						
							| 12 | 11 | orbi1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  ↔  ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ ) )  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 13 | 2 4 12 | 3bitr4i | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) )  ↔  ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 14 | 1 13 | bitri | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) |