Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
2 |
|
orc |
|- ( N e. NN -> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
3 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
4 |
1 2 3
|
jca31 |
|- ( N e. NN -> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
5 |
|
idd |
|- ( ( N e. RR /\ 0 < N ) -> ( N e. NN -> N e. NN ) ) |
6 |
|
lt0neg2 |
|- ( N e. RR -> ( 0 < N <-> -u N < 0 ) ) |
7 |
|
renegcl |
|- ( N e. RR -> -u N e. RR ) |
8 |
|
0re |
|- 0 e. RR |
9 |
|
ltnsym |
|- ( ( -u N e. RR /\ 0 e. RR ) -> ( -u N < 0 -> -. 0 < -u N ) ) |
10 |
7 8 9
|
sylancl |
|- ( N e. RR -> ( -u N < 0 -> -. 0 < -u N ) ) |
11 |
6 10
|
sylbid |
|- ( N e. RR -> ( 0 < N -> -. 0 < -u N ) ) |
12 |
11
|
imp |
|- ( ( N e. RR /\ 0 < N ) -> -. 0 < -u N ) |
13 |
|
nngt0 |
|- ( -u N e. NN -> 0 < -u N ) |
14 |
12 13
|
nsyl |
|- ( ( N e. RR /\ 0 < N ) -> -. -u N e. NN ) |
15 |
|
gt0ne0 |
|- ( ( N e. RR /\ 0 < N ) -> N =/= 0 ) |
16 |
15
|
neneqd |
|- ( ( N e. RR /\ 0 < N ) -> -. N = 0 ) |
17 |
|
ioran |
|- ( -. ( -u N e. NN \/ N = 0 ) <-> ( -. -u N e. NN /\ -. N = 0 ) ) |
18 |
14 16 17
|
sylanbrc |
|- ( ( N e. RR /\ 0 < N ) -> -. ( -u N e. NN \/ N = 0 ) ) |
19 |
18
|
pm2.21d |
|- ( ( N e. RR /\ 0 < N ) -> ( ( -u N e. NN \/ N = 0 ) -> N e. NN ) ) |
20 |
5 19
|
jaod |
|- ( ( N e. RR /\ 0 < N ) -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> N e. NN ) ) |
21 |
20
|
ex |
|- ( N e. RR -> ( 0 < N -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> N e. NN ) ) ) |
22 |
21
|
com23 |
|- ( N e. RR -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> ( 0 < N -> N e. NN ) ) ) |
23 |
22
|
imp31 |
|- ( ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) -> N e. NN ) |
24 |
4 23
|
impbii |
|- ( N e. NN <-> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
25 |
|
elz |
|- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
26 |
|
3orrot |
|- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ -u N e. NN \/ N = 0 ) ) |
27 |
|
3orass |
|- ( ( N e. NN \/ -u N e. NN \/ N = 0 ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
28 |
26 27
|
bitri |
|- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
29 |
28
|
anbi2i |
|- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
30 |
25 29
|
bitri |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
31 |
30
|
anbi1i |
|- ( ( N e. ZZ /\ 0 < N ) <-> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
32 |
24 31
|
bitr4i |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |