Metamath Proof Explorer


Theorem 0z

Description: Zero is an integer. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion 0z
|- 0 e. ZZ

Proof

Step Hyp Ref Expression
1 0re
 |-  0 e. RR
2 eqid
 |-  0 = 0
3 2 3mix1i
 |-  ( 0 = 0 \/ 0 e. NN \/ -u 0 e. NN )
4 elz
 |-  ( 0 e. ZZ <-> ( 0 e. RR /\ ( 0 = 0 \/ 0 e. NN \/ -u 0 e. NN ) ) )
5 1 3 4 mpbir2an
 |-  0 e. ZZ