| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 2 |  | orc | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) | 
						
							| 3 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 4 | 1 2 3 | jca31 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) )  ∧  0  <  𝑁 ) ) | 
						
							| 5 |  | idd | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ ) ) | 
						
							| 6 |  | lt0neg2 | ⊢ ( 𝑁  ∈  ℝ  →  ( 0  <  𝑁  ↔  - 𝑁  <  0 ) ) | 
						
							| 7 |  | renegcl | ⊢ ( 𝑁  ∈  ℝ  →  - 𝑁  ∈  ℝ ) | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | ltnsym | ⊢ ( ( - 𝑁  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( - 𝑁  <  0  →  ¬  0  <  - 𝑁 ) ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( 𝑁  ∈  ℝ  →  ( - 𝑁  <  0  →  ¬  0  <  - 𝑁 ) ) | 
						
							| 11 | 6 10 | sylbid | ⊢ ( 𝑁  ∈  ℝ  →  ( 0  <  𝑁  →  ¬  0  <  - 𝑁 ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  ¬  0  <  - 𝑁 ) | 
						
							| 13 |  | nngt0 | ⊢ ( - 𝑁  ∈  ℕ  →  0  <  - 𝑁 ) | 
						
							| 14 | 12 13 | nsyl | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  ¬  - 𝑁  ∈  ℕ ) | 
						
							| 15 |  | gt0ne0 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  𝑁  ≠  0 ) | 
						
							| 16 | 15 | neneqd | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  ¬  𝑁  =  0 ) | 
						
							| 17 |  | ioran | ⊢ ( ¬  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  ↔  ( ¬  - 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  0 ) ) | 
						
							| 18 | 14 16 17 | sylanbrc | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  ¬  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 19 | 18 | pm2.21d | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  ( ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  𝑁  ∈  ℕ ) ) | 
						
							| 20 | 5 19 | jaod | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  →  ( ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) )  →  𝑁  ∈  ℕ ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝑁  ∈  ℝ  →  ( 0  <  𝑁  →  ( ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) )  →  𝑁  ∈  ℕ ) ) ) | 
						
							| 22 | 21 | com23 | ⊢ ( 𝑁  ∈  ℝ  →  ( ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) )  →  ( 0  <  𝑁  →  𝑁  ∈  ℕ ) ) ) | 
						
							| 23 | 22 | imp31 | ⊢ ( ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) )  ∧  0  <  𝑁 )  →  𝑁  ∈  ℕ ) | 
						
							| 24 | 4 23 | impbii | ⊢ ( 𝑁  ∈  ℕ  ↔  ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) )  ∧  0  <  𝑁 ) ) | 
						
							| 25 |  | elz | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 26 |  | 3orrot | ⊢ ( ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ )  ↔  ( 𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 27 |  | 3orass | ⊢ ( ( 𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  ↔  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) | 
						
							| 28 | 26 27 | bitri | ⊢ ( ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ )  ↔  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) | 
						
							| 29 | 28 | anbi2i | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  =  0  ∨  𝑁  ∈  ℕ  ∨  - 𝑁  ∈  ℕ ) )  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) ) | 
						
							| 30 | 25 29 | bitri | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) ) ) | 
						
							| 31 | 30 | anbi1i | ⊢ ( ( 𝑁  ∈  ℤ  ∧  0  <  𝑁 )  ↔  ( ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ  ∨  ( - 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) )  ∧  0  <  𝑁 ) ) | 
						
							| 32 | 24 31 | bitr4i | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℤ  ∧  0  <  𝑁 ) ) |