Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
2 |
|
orc |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
3 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
4 |
1 2 3
|
jca31 |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ∧ 0 < 𝑁 ) ) |
5 |
|
idd |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) ) |
6 |
|
lt0neg2 |
⊢ ( 𝑁 ∈ ℝ → ( 0 < 𝑁 ↔ - 𝑁 < 0 ) ) |
7 |
|
renegcl |
⊢ ( 𝑁 ∈ ℝ → - 𝑁 ∈ ℝ ) |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
ltnsym |
⊢ ( ( - 𝑁 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) ) |
10 |
7 8 9
|
sylancl |
⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) ) |
11 |
6 10
|
sylbid |
⊢ ( 𝑁 ∈ ℝ → ( 0 < 𝑁 → ¬ 0 < - 𝑁 ) ) |
12 |
11
|
imp |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ¬ 0 < - 𝑁 ) |
13 |
|
nngt0 |
⊢ ( - 𝑁 ∈ ℕ → 0 < - 𝑁 ) |
14 |
12 13
|
nsyl |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ¬ - 𝑁 ∈ ℕ ) |
15 |
|
gt0ne0 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → 𝑁 ≠ 0 ) |
16 |
15
|
neneqd |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ¬ 𝑁 = 0 ) |
17 |
|
ioran |
⊢ ( ¬ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( ¬ - 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0 ) ) |
18 |
14 16 17
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ¬ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
19 |
18
|
pm2.21d |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ( ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → 𝑁 ∈ ℕ ) ) |
20 |
5 19
|
jaod |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ( ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → 𝑁 ∈ ℕ ) ) |
21 |
20
|
ex |
⊢ ( 𝑁 ∈ ℝ → ( 0 < 𝑁 → ( ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → 𝑁 ∈ ℕ ) ) ) |
22 |
21
|
com23 |
⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) ) |
23 |
22
|
imp31 |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ∧ 0 < 𝑁 ) → 𝑁 ∈ ℕ ) |
24 |
4 23
|
impbii |
⊢ ( 𝑁 ∈ ℕ ↔ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ∧ 0 < 𝑁 ) ) |
25 |
|
elz |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
26 |
|
3orrot |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
27 |
|
3orass |
⊢ ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
28 |
26 27
|
bitri |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
29 |
28
|
anbi2i |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ) |
30 |
25 29
|
bitri |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ) |
31 |
30
|
anbi1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ↔ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ∧ 0 < 𝑁 ) ) |
32 |
24 31
|
bitr4i |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |