Metamath Proof Explorer


Theorem ltnsym

Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion ltnsym ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 axlttri ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵𝐵 < 𝐴 ) ) )
2 pm2.46 ( ¬ ( 𝐴 = 𝐵𝐵 < 𝐴 ) → ¬ 𝐵 < 𝐴 )
3 1 2 syl6bi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) )