Metamath Proof Explorer


Theorem renegcl

Description: Closure law for negative of reals. The weak deduction theorem dedth is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli , to an antecedent. (Contributed by NM, 20-Jan-1997) (Proof modification is discouraged.)

Ref Expression
Assertion renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 negeq ( 𝐴 = if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) → - 𝐴 = - if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) )
2 1 eleq1d ( 𝐴 = if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) → ( - 𝐴 ∈ ℝ ↔ - if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) ∈ ℝ ) )
3 1re 1 ∈ ℝ
4 3 elimel if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) ∈ ℝ
5 4 renegcli - if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) ∈ ℝ
6 2 5 dedth ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )