Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
ax-rnegex |
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) |
3 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
4 |
|
df-neg |
⊢ - 𝐴 = ( 0 − 𝐴 ) |
5 |
4
|
eqeq1i |
⊢ ( - 𝐴 = 𝑥 ↔ ( 0 − 𝐴 ) = 𝑥 ) |
6 |
|
0cn |
⊢ 0 ∈ ℂ |
7 |
1
|
recni |
⊢ 𝐴 ∈ ℂ |
8 |
|
subadd |
⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 0 − 𝐴 ) = 𝑥 ↔ ( 𝐴 + 𝑥 ) = 0 ) ) |
9 |
6 7 8
|
mp3an12 |
⊢ ( 𝑥 ∈ ℂ → ( ( 0 − 𝐴 ) = 𝑥 ↔ ( 𝐴 + 𝑥 ) = 0 ) ) |
10 |
5 9
|
syl5bb |
⊢ ( 𝑥 ∈ ℂ → ( - 𝐴 = 𝑥 ↔ ( 𝐴 + 𝑥 ) = 0 ) ) |
11 |
3 10
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( - 𝐴 = 𝑥 ↔ ( 𝐴 + 𝑥 ) = 0 ) ) |
12 |
|
eleq1a |
⊢ ( 𝑥 ∈ ℝ → ( - 𝐴 = 𝑥 → - 𝐴 ∈ ℝ ) ) |
13 |
11 12
|
sylbird |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝐴 + 𝑥 ) = 0 → - 𝐴 ∈ ℝ ) ) |
14 |
13
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 → - 𝐴 ∈ ℝ ) |
15 |
1 2 14
|
mp2b |
⊢ - 𝐴 ∈ ℝ |