Metamath Proof Explorer


Theorem resubcli

Description: Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses renegcl.1 𝐴 ∈ ℝ
resubcl.2 𝐵 ∈ ℝ
Assertion resubcli ( 𝐴𝐵 ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 renegcl.1 𝐴 ∈ ℝ
2 resubcl.2 𝐵 ∈ ℝ
3 1 recni 𝐴 ∈ ℂ
4 2 recni 𝐵 ∈ ℂ
5 negsub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 ) )
6 3 4 5 mp2an ( 𝐴 + - 𝐵 ) = ( 𝐴𝐵 )
7 2 renegcli - 𝐵 ∈ ℝ
8 1 7 readdcli ( 𝐴 + - 𝐵 ) ∈ ℝ
9 6 8 eqeltrri ( 𝐴𝐵 ) ∈ ℝ