Metamath Proof Explorer


Theorem resubcli

Description: Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses renegcl.1
|- A e. RR
resubcl.2
|- B e. RR
Assertion resubcli
|- ( A - B ) e. RR

Proof

Step Hyp Ref Expression
1 renegcl.1
 |-  A e. RR
2 resubcl.2
 |-  B e. RR
3 1 recni
 |-  A e. CC
4 2 recni
 |-  B e. CC
5 negsub
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) )
6 3 4 5 mp2an
 |-  ( A + -u B ) = ( A - B )
7 2 renegcli
 |-  -u B e. RR
8 1 7 readdcli
 |-  ( A + -u B ) e. RR
9 6 8 eqeltrri
 |-  ( A - B ) e. RR