Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | nngt0 | ⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
2 | nnge1 | ⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) | |
3 | 0lt1 | ⊢ 0 < 1 | |
4 | 0re | ⊢ 0 ∈ ℝ | |
5 | 1re | ⊢ 1 ∈ ℝ | |
6 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) ) | |
7 | 4 5 6 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) ) |
8 | 3 7 | mpani | ⊢ ( 𝐴 ∈ ℝ → ( 1 ≤ 𝐴 → 0 < 𝐴 ) ) |
9 | 1 2 8 | sylc | ⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) |