Metamath Proof Explorer


Theorem nngt0

Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999)

Ref Expression
Assertion nngt0 ( 𝐴 ∈ ℕ → 0 < 𝐴 )

Proof

Step Hyp Ref Expression
1 nnre ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ )
2 nnge1 ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 )
3 0lt1 0 < 1
4 0re 0 ∈ ℝ
5 1re 1 ∈ ℝ
6 ltletr ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) )
7 4 5 6 mp3an12 ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) )
8 3 7 mpani ( 𝐴 ∈ ℝ → ( 1 ≤ 𝐴 → 0 < 𝐴 ) )
9 1 2 8 sylc ( 𝐴 ∈ ℕ → 0 < 𝐴 )