Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 1 ≤ 𝑥 ↔ 1 ≤ 1 ) ) |
2 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 ≤ 𝑥 ↔ 1 ≤ 𝑦 ) ) |
3 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 ≤ 𝑥 ↔ 1 ≤ ( 𝑦 + 1 ) ) ) |
4 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 1 ≤ 𝑥 ↔ 1 ≤ 𝐴 ) ) |
5 |
|
1le1 |
⊢ 1 ≤ 1 |
6 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
7 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
8 |
7
|
addid1d |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 0 ) = 𝑦 ) |
9 |
8
|
breq2d |
⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ ( 𝑦 + 0 ) ↔ 1 ≤ 𝑦 ) ) |
10 |
|
0lt1 |
⊢ 0 < 1 |
11 |
|
0re |
⊢ 0 ∈ ℝ |
12 |
|
1re |
⊢ 1 ∈ ℝ |
13 |
|
axltadd |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 < 1 → ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ) ) |
14 |
11 12 13
|
mp3an12 |
⊢ ( 𝑦 ∈ ℝ → ( 0 < 1 → ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ) ) |
15 |
10 14
|
mpi |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ) |
16 |
|
readdcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑦 + 0 ) ∈ ℝ ) |
17 |
11 16
|
mpan2 |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 0 ) ∈ ℝ ) |
18 |
|
peano2re |
⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 1 ) ∈ ℝ ) |
19 |
|
lttr |
⊢ ( ( ( 𝑦 + 0 ) ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) < 1 ) → ( 𝑦 + 0 ) < 1 ) ) |
20 |
12 19
|
mp3an3 |
⊢ ( ( ( 𝑦 + 0 ) ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ( ( ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) < 1 ) → ( 𝑦 + 0 ) < 1 ) ) |
21 |
17 18 20
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ → ( ( ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) < 1 ) → ( 𝑦 + 0 ) < 1 ) ) |
22 |
15 21
|
mpand |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 + 1 ) < 1 → ( 𝑦 + 0 ) < 1 ) ) |
23 |
22
|
con3d |
⊢ ( 𝑦 ∈ ℝ → ( ¬ ( 𝑦 + 0 ) < 1 → ¬ ( 𝑦 + 1 ) < 1 ) ) |
24 |
|
lenlt |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑦 + 0 ) ∈ ℝ ) → ( 1 ≤ ( 𝑦 + 0 ) ↔ ¬ ( 𝑦 + 0 ) < 1 ) ) |
25 |
12 17 24
|
sylancr |
⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ ( 𝑦 + 0 ) ↔ ¬ ( 𝑦 + 0 ) < 1 ) ) |
26 |
|
lenlt |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ( 1 ≤ ( 𝑦 + 1 ) ↔ ¬ ( 𝑦 + 1 ) < 1 ) ) |
27 |
12 18 26
|
sylancr |
⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ ( 𝑦 + 1 ) ↔ ¬ ( 𝑦 + 1 ) < 1 ) ) |
28 |
23 25 27
|
3imtr4d |
⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ ( 𝑦 + 0 ) → 1 ≤ ( 𝑦 + 1 ) ) ) |
29 |
9 28
|
sylbird |
⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ 𝑦 → 1 ≤ ( 𝑦 + 1 ) ) ) |
30 |
6 29
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( 1 ≤ 𝑦 → 1 ≤ ( 𝑦 + 1 ) ) ) |
31 |
1 2 3 4 5 30
|
nnind |
⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) |