Metamath Proof Explorer


Theorem nnge1

Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999)

Ref Expression
Assertion nnge1 A1A

Proof

Step Hyp Ref Expression
1 breq2 x=11x11
2 breq2 x=y1x1y
3 breq2 x=y+11x1y+1
4 breq2 x=A1x1A
5 1le1 11
6 nnre yy
7 recn yy
8 7 addridd yy+0=y
9 8 breq2d y1y+01y
10 0lt1 0<1
11 0re 0
12 1re 1
13 axltadd 01y0<1y+0<y+1
14 11 12 13 mp3an12 y0<1y+0<y+1
15 10 14 mpi yy+0<y+1
16 readdcl y0y+0
17 11 16 mpan2 yy+0
18 peano2re yy+1
19 lttr y+0y+11y+0<y+1y+1<1y+0<1
20 12 19 mp3an3 y+0y+1y+0<y+1y+1<1y+0<1
21 17 18 20 syl2anc yy+0<y+1y+1<1y+0<1
22 15 21 mpand yy+1<1y+0<1
23 22 con3d y¬y+0<1¬y+1<1
24 lenlt 1y+01y+0¬y+0<1
25 12 17 24 sylancr y1y+0¬y+0<1
26 lenlt 1y+11y+1¬y+1<1
27 12 18 26 sylancr y1y+1¬y+1<1
28 23 25 27 3imtr4d y1y+01y+1
29 9 28 sylbird y1y1y+1
30 6 29 syl y1y1y+1
31 1 2 3 4 5 30 nnind A1A