Metamath Proof Explorer
Table of Contents - 5.4. Integer sets
- Positive integers (as a subset of complex numbers)
- cn
- df-nn
- nnexALT
- peano5nni
- nnssre
- nnsscn
- nnex
- nnre
- nncn
- nnrei
- nncni
- 1nn
- peano2nn
- dfnn2
- dfnn3
- nnred
- nncnd
- peano2nnd
- Principle of mathematical induction
- nnind
- nnindALT
- nnindd
- nn1m1nn
- nn1suc
- nnaddcl
- nnmulcl
- nnmulcli
- nnmtmip
- nn2ge
- nnge1
- nngt1ne1
- nnle1eq1
- nngt0
- nnnlt1
- nnnle0
- nnne0
- nnneneg
- 0nnn
- 0nnnALT
- nnne0ALT
- nngt0i
- nnne0i
- nndivre
- nnrecre
- nnrecgt0
- nnsub
- nnsubi
- nndiv
- nndivtr
- nnge1d
- nngt0d
- nnne0d
- nnrecred
- nnaddcld
- nnmulcld
- nndivred
- Decimal representation of numbers
- c2
- c3
- c4
- c5
- c6
- c7
- c8
- c9
- df-2
- df-3
- df-4
- df-5
- df-6
- df-7
- df-8
- df-9
- 0ne1
- 1m1e0
- 2nn
- 2re
- 2cn
- 2cnALT
- 2ex
- 2cnd
- 3nn
- 3re
- 3cn
- 3ex
- 4nn
- 4re
- 4cn
- 5nn
- 5re
- 5cn
- 6nn
- 6re
- 6cn
- 7nn
- 7re
- 7cn
- 8nn
- 8re
- 8cn
- 9nn
- 9re
- 9cn
- 0le0
- 0le2
- 2pos
- 2ne0
- 3pos
- 3ne0
- 4pos
- 4ne0
- 5pos
- 6pos
- 7pos
- 8pos
- 9pos
- Some properties of specific numbers
- neg1cn
- neg1rr
- neg1ne0
- neg1lt0
- negneg1e1
- 1pneg1e0
- 0m0e0
- 1m0e1
- 0p1e1
- fv0p1e1
- 1p0e1
- 1p1e2
- 2m1e1
- 1e2m1
- 3m1e2
- 4m1e3
- 5m1e4
- 6m1e5
- 7m1e6
- 8m1e7
- 9m1e8
- 2p2e4
- 2times
- times2
- 2timesi
- times2i
- 2txmxeqx
- 2div2e1
- 2p1e3
- 1p2e3
- 1p2e3ALT
- 3p1e4
- 4p1e5
- 5p1e6
- 6p1e7
- 7p1e8
- 8p1e9
- 3p2e5
- 3p3e6
- 4p2e6
- 4p3e7
- 4p4e8
- 5p2e7
- 5p3e8
- 5p4e9
- 6p2e8
- 6p3e9
- 7p2e9
- 1t1e1
- 2t1e2
- 2t2e4
- 3t1e3
- 3t2e6
- 3t3e9
- 4t2e8
- 2t0e0
- 4d2e2
- 1lt2
- 2lt3
- 1lt3
- 3lt4
- 2lt4
- 1lt4
- 4lt5
- 3lt5
- 2lt5
- 1lt5
- 5lt6
- 4lt6
- 3lt6
- 2lt6
- 1lt6
- 6lt7
- 5lt7
- 4lt7
- 3lt7
- 2lt7
- 1lt7
- 7lt8
- 6lt8
- 5lt8
- 4lt8
- 3lt8
- 2lt8
- 1lt8
- 8lt9
- 7lt9
- 6lt9
- 5lt9
- 4lt9
- 3lt9
- 2lt9
- 1lt9
- 0ne2
- 1ne2
- 1le2
- 2cnne0
- 2rene0
- 1le3
- neg1mulneg1e1
- halfre
- halfcn
- halfgt0
- halfge0
- halflt1
- 1mhlfehlf
- 8th4div3
- halfpm6th
- it0e0
- 2mulicn
- 2muline0
- Simple number properties
- halfcl
- rehalfcl
- half0
- 2halves
- halfpos2
- halfpos
- halfnneg2
- halfaddsubcl
- halfaddsub
- subhalfhalf
- lt2halves
- addltmul
- nominpos
- avglt1
- avglt2
- avgle1
- avgle2
- avgle
- 2timesd
- times2d
- halfcld
- 2halvesd
- rehalfcld
- lt2halvesd
- rehalfcli
- lt2addmuld
- add1p1
- sub1m1
- cnm2m1cnm3
- xp1d2m1eqxm1d2
- div4p1lem1div2
- The Archimedean property
- nnunb
- arch
- nnrecl
- bndndx
- Nonnegative integers (as a subset of complex numbers)
- cn0
- df-n0
- elnn0
- nnssnn0
- nn0ssre
- nn0sscn
- nn0ex
- nnnn0
- nnnn0i
- nn0re
- nn0cn
- nn0rei
- nn0cni
- dfn2
- elnnne0
- 0nn0
- 1nn0
- 2nn0
- 3nn0
- 4nn0
- 5nn0
- 6nn0
- 7nn0
- 8nn0
- 9nn0
- nn0ge0
- nn0nlt0
- nn0ge0i
- nn0le0eq0
- nn0p1gt0
- nnnn0addcl
- nn0nnaddcl
- 0mnnnnn0
- un0addcl
- un0mulcl
- nn0addcl
- nn0mulcl
- nn0addcli
- nn0mulcli
- nn0p1nn
- peano2nn0
- nnm1nn0
- elnn0nn
- elnnnn0
- elnnnn0b
- elnnnn0c
- nn0addge1
- nn0addge2
- nn0addge1i
- nn0addge2i
- nn0sub
- ltsubnn0
- nn0negleid
- difgtsumgt
- nn0le2xi
- nn0lele2xi
- frnnn0supp
- frnnn0fsupp
- frnnn0suppg
- frnnn0fsuppg
- nnnn0d
- nn0red
- nn0cnd
- nn0ge0d
- nn0addcld
- nn0mulcld
- nn0readdcl
- nn0n0n1ge2
- nn0n0n1ge2b
- nn0ge2m1nn
- nn0ge2m1nn0
- nn0nndivcl
- Extended nonnegative integers
- cxnn0
- df-xnn0
- elxnn0
- nn0ssxnn0
- nn0xnn0
- xnn0xr
- 0xnn0
- pnf0xnn0
- nn0nepnf
- nn0xnn0d
- nn0nepnfd
- xnn0nemnf
- xnn0xrnemnf
- xnn0nnn0pnf
- Integers (as a subset of complex numbers)
- cz
- df-z
- elz
- nnnegz
- zre
- zcn
- zrei
- zssre
- zsscn
- zex
- elnnz
- 0z
- 0zd
- elnn0z
- elznn0nn
- elznn0
- elznn
- zle0orge1
- elz2
- dfz2
- zexALT
- nnssz
- nn0ssz
- nnz
- nn0z
- nnzi
- nn0zi
- elnnz1
- znnnlt1
- nnzrab
- nn0zrab
- 1z
- 1zzd
- 2z
- 3z
- 4z
- znegcl
- neg1z
- znegclb
- nn0negz
- nn0negzi
- zaddcl
- peano2z
- zsubcl
- peano2zm
- zletr
- zrevaddcl
- znnsub
- znn0sub
- nzadd
- zmulcl
- zltp1le
- zleltp1
- zlem1lt
- zltlem1
- zgt0ge1
- nnleltp1
- nnltp1le
- nnaddm1cl
- nn0ltp1le
- nn0leltp1
- nn0ltlem1
- nn0sub2
- nn0lt10b
- nn0lt2
- nn0le2is012
- nn0lem1lt
- nnlem1lt
- nnltlem1
- nnm1ge0
- nn0ge0div
- zdiv
- zdivadd
- zdivmul
- zextle
- zextlt
- recnz
- btwnnz
- gtndiv
- halfnz
- 3halfnz
- suprzcl
- prime
- msqznn
- zneo
- nneo
- nneoi
- zeo
- zeo2
- peano2uz2
- peano5uzi
- peano5uzti
- dfuzi
- uzind
- uzind2
- uzind3
- nn0ind
- nn0indALT
- nn0indd
- fzind
- fnn0ind
- nn0ind-raph
- zindd
- btwnz
- nn0zd
- nnzd
- zred
- zcnd
- znegcld
- peano2zd
- zaddcld
- zsubcld
- zmulcld
- znnn0nn
- zadd2cl
- zriotaneg
- suprfinzcl
- Decimal arithmetic
- cdc
- df-dec
- 9p1e10
- dfdec10
- decex
- deceq1
- deceq2
- deceq1i
- deceq2i
- deceq12i
- numnncl
- num0u
- num0h
- numcl
- numsuc
- deccl
- 10nn
- 10pos
- 10nn0
- 10re
- decnncl
- dec0u
- dec0h
- numnncl2
- decnncl2
- numlt
- numltc
- le9lt10
- declt
- decltc
- declth
- decsuc
- 3declth
- 3decltc
- decle
- decleh
- declei
- numlti
- declti
- decltdi
- numsucc
- decsucc
- 1e0p1
- dec10p
- numma
- nummac
- numma2c
- numadd
- numaddc
- nummul1c
- nummul2c
- decma
- decmac
- decma2c
- decadd
- decaddc
- decaddc2
- decrmanc
- decrmac
- decaddm10
- decaddi
- decaddci
- decaddci2
- decsubi
- decmul1
- decmul1c
- decmul2c
- decmulnc
- 11multnc
- decmul10add
- 6p5lem
- 5p5e10
- 6p4e10
- 6p5e11
- 6p6e12
- 7p3e10
- 7p4e11
- 7p5e12
- 7p6e13
- 7p7e14
- 8p2e10
- 8p3e11
- 8p4e12
- 8p5e13
- 8p6e14
- 8p7e15
- 8p8e16
- 9p2e11
- 9p3e12
- 9p4e13
- 9p5e14
- 9p6e15
- 9p7e16
- 9p8e17
- 9p9e18
- 10p10e20
- 10m1e9
- 4t3lem
- 4t3e12
- 4t4e16
- 5t2e10
- 5t3e15
- 5t4e20
- 5t5e25
- 6t2e12
- 6t3e18
- 6t4e24
- 6t5e30
- 6t6e36
- 7t2e14
- 7t3e21
- 7t4e28
- 7t5e35
- 7t6e42
- 7t7e49
- 8t2e16
- 8t3e24
- 8t4e32
- 8t5e40
- 8t6e48
- 8t7e56
- 8t8e64
- 9t2e18
- 9t3e27
- 9t4e36
- 9t5e45
- 9t6e54
- 9t7e63
- 9t8e72
- 9t9e81
- 9t11e99
- 9lt10
- 8lt10
- 7lt10
- 6lt10
- 5lt10
- 4lt10
- 3lt10
- 2lt10
- 1lt10
- decbin0
- decbin2
- decbin3
- halfthird
- 5recm6rec
- Upper sets of integers
- cuz
- df-uz
- uzval
- uzf
- eluz1
- eluzel2
- eluz2
- eluzmn
- eluz1i
- eluzuzle
- eluzelz
- eluzelre
- eluzelcn
- eluzle
- eluz
- uzid
- uzidd
- uzn0
- uztrn
- uztrn2
- uzneg
- uzssz
- uzssre
- uzss
- uztric
- uz11
- eluzp1m1
- eluzp1l
- eluzp1p1
- eluzaddi
- eluzsubi
- eluzadd
- eluzsub
- subeluzsub
- uzm1
- uznn0sub
- uzin
- uzp1
- nn0uz
- nnuz
- elnnuz
- elnn0uz
- eluz2nn
- eluz4eluz2
- eluz4nn
- eluzge2nn0
- eluz2n0
- uzuzle23
- eluzge3nn
- uz3m2nn
- 1eluzge0
- 2eluzge0
- 2eluzge1
- uznnssnn
- raluz
- raluz2
- rexuz
- rexuz2
- 2rexuz
- peano2uz
- peano2uzs
- peano2uzr
- uzaddcl
- nn0pzuz
- uzind4
- uzind4ALT
- uzind4s
- uzind4s2
- uzind4i
- uzwo
- uzwo2
- nnwo
- nnwof
- nnwos
- indstr
- eluznn0
- eluznn
- eluz2b1
- eluz2gt1
- eluz2b2
- eluz2b3
- uz2m1nn
- 1nuz2
- elnn1uz2
- uz2mulcl
- indstr2
- uzinfi
- nninf
- nn0inf
- infssuzle
- infssuzcl
- ublbneg
- eqreznegel
- supminf
- lbzbi
- zsupss
- suprzcl2
- suprzub
- uzsupss
- nn01to3
- nn0ge2m1nnALT
- Well-ordering principle for bounded-below sets of integers
- uzwo3
- zmin
- zmax
- zbtwnre
- rebtwnz
- Rational numbers (as a subset of complex numbers)
- cq
- df-q
- elq
- qmulz
- znq
- qre
- zq
- qred
- zssq
- nn0ssq
- nnssq
- qssre
- qsscn
- qex
- nnq
- qcn
- qexALT
- qaddcl
- qnegcl
- qmulcl
- qsubcl
- qreccl
- qdivcl
- qrevaddcl
- nnrecq
- irradd
- irrmul
- elpq
- elpqb
- Existence of the set of complex numbers
- rpnnen1lem2
- rpnnen1lem1
- rpnnen1lem3
- rpnnen1lem4
- rpnnen1lem5
- rpnnen1lem6
- rpnnen1
- reexALT
- cnref1o
- cnexALT
- xrex
- addex
- mulex