Metamath Proof Explorer


Theorem nnneneg

Description: No positive integer is equal to its negation. (Contributed by AV, 20-Jun-2023)

Ref Expression
Assertion nnneneg AAA

Proof

Step Hyp Ref Expression
1 nnne0 AA0
2 1 neneqd A¬A=0
3 nncn AA
4 3 eqnegd AA=AA=0
5 2 4 mtbird A¬A=A
6 5 neqned AAA