Description: A positive integer is nonzero. See nnne0ALT for a shorter proof using ax-pre-mulgt0 . This proof avoids 0lt1 , and thus ax-pre-mulgt0 , by splitting ax-1ne0 into the two separate cases 0 < 1 and 1 < 0 . (Contributed by NM, 27-Sep-1999) Remove dependency on ax-pre-mulgt0 . (Revised by Steven Nguyen, 30-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nnne0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 | |
|
2 | 1re | |
|
3 | 0re | |
|
4 | 2 3 | lttri2i | |
5 | 1 4 | mpbi | |
6 | breq1 | |
|
7 | 6 | imbi2d | |
8 | breq1 | |
|
9 | 8 | imbi2d | |
10 | breq1 | |
|
11 | 10 | imbi2d | |
12 | breq1 | |
|
13 | 12 | imbi2d | |
14 | id | |
|
15 | simp1 | |
|
16 | 15 | nnred | |
17 | 1red | |
|
18 | 16 17 | readdcld | |
19 | 3 2 | readdcli | |
20 | 19 | a1i | |
21 | 0red | |
|
22 | simp3 | |
|
23 | 16 21 17 22 | ltadd1dd | |
24 | ax-1cn | |
|
25 | 24 | addlidi | |
26 | simp2 | |
|
27 | 25 26 | eqbrtrid | |
28 | 18 20 21 23 27 | lttrd | |
29 | 28 | 3exp | |
30 | 29 | a2d | |
31 | 7 9 11 13 14 30 | nnind | |
32 | 31 | imp | |
33 | 32 | lt0ne0d | |
34 | breq2 | |
|
35 | 34 | imbi2d | |
36 | breq2 | |
|
37 | 36 | imbi2d | |
38 | breq2 | |
|
39 | 38 | imbi2d | |
40 | breq2 | |
|
41 | 40 | imbi2d | |
42 | id | |
|
43 | simp1 | |
|
44 | 43 | nnred | |
45 | 1red | |
|
46 | simp3 | |
|
47 | simp2 | |
|
48 | 44 45 46 47 | addgt0d | |
49 | 48 | 3exp | |
50 | 49 | a2d | |
51 | 35 37 39 41 42 50 | nnind | |
52 | 51 | imp | |
53 | 52 | gt0ne0d | |
54 | 33 53 | jaodan | |
55 | 5 54 | mpan2 | |