| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 2 |
|
1re |
⊢ 1 ∈ ℝ |
| 3 |
|
0re |
⊢ 0 ∈ ℝ |
| 4 |
2 3
|
lttri2i |
⊢ ( 1 ≠ 0 ↔ ( 1 < 0 ∨ 0 < 1 ) ) |
| 5 |
1 4
|
mpbi |
⊢ ( 1 < 0 ∨ 0 < 1 ) |
| 6 |
|
breq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 < 0 ↔ 1 < 0 ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 1 < 0 → 𝑥 < 0 ) ↔ ( 1 < 0 → 1 < 0 ) ) ) |
| 8 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 < 0 ↔ 𝑦 < 0 ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 1 < 0 → 𝑥 < 0 ) ↔ ( 1 < 0 → 𝑦 < 0 ) ) ) |
| 10 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 < 0 ↔ ( 𝑦 + 1 ) < 0 ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 1 < 0 → 𝑥 < 0 ) ↔ ( 1 < 0 → ( 𝑦 + 1 ) < 0 ) ) ) |
| 12 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 < 0 ↔ 𝐴 < 0 ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 1 < 0 → 𝑥 < 0 ) ↔ ( 1 < 0 → 𝐴 < 0 ) ) ) |
| 14 |
|
id |
⊢ ( 1 < 0 → 1 < 0 ) |
| 15 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 𝑦 ∈ ℕ ) |
| 16 |
15
|
nnred |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 𝑦 ∈ ℝ ) |
| 17 |
|
1red |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 1 ∈ ℝ ) |
| 18 |
16 17
|
readdcld |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 19 |
3 2
|
readdcli |
⊢ ( 0 + 1 ) ∈ ℝ |
| 20 |
19
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 0 + 1 ) ∈ ℝ ) |
| 21 |
|
0red |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 0 ∈ ℝ ) |
| 22 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 𝑦 < 0 ) |
| 23 |
16 21 17 22
|
ltadd1dd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 𝑦 + 1 ) < ( 0 + 1 ) ) |
| 24 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 25 |
24
|
addlidi |
⊢ ( 0 + 1 ) = 1 |
| 26 |
|
simp2 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 1 < 0 ) |
| 27 |
25 26
|
eqbrtrid |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 0 + 1 ) < 0 ) |
| 28 |
18 20 21 23 27
|
lttrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 𝑦 + 1 ) < 0 ) |
| 29 |
28
|
3exp |
⊢ ( 𝑦 ∈ ℕ → ( 1 < 0 → ( 𝑦 < 0 → ( 𝑦 + 1 ) < 0 ) ) ) |
| 30 |
29
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 1 < 0 → 𝑦 < 0 ) → ( 1 < 0 → ( 𝑦 + 1 ) < 0 ) ) ) |
| 31 |
7 9 11 13 14 30
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( 1 < 0 → 𝐴 < 0 ) ) |
| 32 |
31
|
imp |
⊢ ( ( 𝐴 ∈ ℕ ∧ 1 < 0 ) → 𝐴 < 0 ) |
| 33 |
32
|
lt0ne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 1 < 0 ) → 𝐴 ≠ 0 ) |
| 34 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 0 < 𝑥 ↔ 0 < 1 ) ) |
| 35 |
34
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 0 < 1 → 0 < 𝑥 ) ↔ ( 0 < 1 → 0 < 1 ) ) ) |
| 36 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 0 < 𝑥 ↔ 0 < 𝑦 ) ) |
| 37 |
36
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 0 < 1 → 0 < 𝑥 ) ↔ ( 0 < 1 → 0 < 𝑦 ) ) ) |
| 38 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 0 < 𝑥 ↔ 0 < ( 𝑦 + 1 ) ) ) |
| 39 |
38
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 0 < 1 → 0 < 𝑥 ) ↔ ( 0 < 1 → 0 < ( 𝑦 + 1 ) ) ) ) |
| 40 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 0 < 𝑥 ↔ 0 < 𝐴 ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 0 < 1 → 0 < 𝑥 ) ↔ ( 0 < 1 → 0 < 𝐴 ) ) ) |
| 42 |
|
id |
⊢ ( 0 < 1 → 0 < 1 ) |
| 43 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 𝑦 ∈ ℕ ) |
| 44 |
43
|
nnred |
⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 45 |
|
1red |
⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 1 ∈ ℝ ) |
| 46 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 0 < 𝑦 ) |
| 47 |
|
simp2 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 0 < 1 ) |
| 48 |
44 45 46 47
|
addgt0d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 0 < ( 𝑦 + 1 ) ) |
| 49 |
48
|
3exp |
⊢ ( 𝑦 ∈ ℕ → ( 0 < 1 → ( 0 < 𝑦 → 0 < ( 𝑦 + 1 ) ) ) ) |
| 50 |
49
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 0 < 1 → 0 < 𝑦 ) → ( 0 < 1 → 0 < ( 𝑦 + 1 ) ) ) ) |
| 51 |
35 37 39 41 42 50
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( 0 < 1 → 0 < 𝐴 ) ) |
| 52 |
51
|
imp |
⊢ ( ( 𝐴 ∈ ℕ ∧ 0 < 1 ) → 0 < 𝐴 ) |
| 53 |
52
|
gt0ne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 0 < 1 ) → 𝐴 ≠ 0 ) |
| 54 |
33 53
|
jaodan |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 1 < 0 ∨ 0 < 1 ) ) → 𝐴 ≠ 0 ) |
| 55 |
5 54
|
mpan2 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) |