Metamath Proof Explorer


Theorem gt0ne0d

Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis gt0ne0d.1 ( 𝜑 → 0 < 𝐴 )
Assertion gt0ne0d ( 𝜑𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 gt0ne0d.1 ( 𝜑 → 0 < 𝐴 )
2 0re 0 ∈ ℝ
3 ltne ( ( 0 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
4 2 1 3 sylancr ( 𝜑𝐴 ≠ 0 )