Metamath Proof Explorer


Theorem lt0ne0d

Description: Something less than zero is not zero. Deduction form. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypothesis lt0ne0d.1 φA<0
Assertion lt0ne0d φA0

Proof

Step Hyp Ref Expression
1 lt0ne0d.1 φA<0
2 0re 0
3 2 ltnri ¬0<0
4 breq1 A=0A<00<0
5 3 4 mtbiri A=0¬A<0
6 5 necon2ai A<0A0
7 1 6 syl φA0