Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
leidd
Next ⟩
msqgt0d
Metamath Proof Explorer
Ascii
Unicode
Theorem
leidd
Description:
'Less than or equal to' is reflexive.
(Contributed by
Mario Carneiro
, 27-May-2016)
Ref
Expression
Hypothesis
leidd.1
⊢
φ
→
A
∈
ℝ
Assertion
leidd
⊢
φ
→
A
≤
A
Proof
Step
Hyp
Ref
Expression
1
leidd.1
⊢
φ
→
A
∈
ℝ
2
leid
⊢
A
∈
ℝ
→
A
≤
A
3
1
2
syl
⊢
φ
→
A
≤
A