Metamath Proof Explorer


Theorem ltadd1dd

Description: Addition to both sides of 'less than'. Theorem I.18 of Apostol p. 20. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
ltadd1d.3 φ C
ltadd1dd.4 φ A < B
Assertion ltadd1dd φ A + C < B + C

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 ltadd1d.3 φ C
4 ltadd1dd.4 φ A < B
5 1 2 3 ltadd1d φ A < B A + C < B + C
6 4 5 mpbid φ A + C < B + C