Metamath Proof Explorer


Theorem nnind

Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl for an example of its use. See nn0ind for induction on nonnegative integers and uzind , uzind4 for induction on an arbitrary upper set of integers. See indstr for strong induction. See also nnindALT . This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997) (Revised by Mario Carneiro, 16-Jun-2013)

Ref Expression
Hypotheses nnind.1 x = 1 φ ψ
nnind.2 x = y φ χ
nnind.3 x = y + 1 φ θ
nnind.4 x = A φ τ
nnind.5 ψ
nnind.6 y χ θ
Assertion nnind A τ

Proof

Step Hyp Ref Expression
1 nnind.1 x = 1 φ ψ
2 nnind.2 x = y φ χ
3 nnind.3 x = y + 1 φ θ
4 nnind.4 x = A φ τ
5 nnind.5 ψ
6 nnind.6 y χ θ
7 1nn 1
8 1 elrab 1 x | φ 1 ψ
9 7 5 8 mpbir2an 1 x | φ
10 elrabi y x | φ y
11 peano2nn y y + 1
12 11 a1d y y y + 1
13 12 6 anim12d y y χ y + 1 θ
14 2 elrab y x | φ y χ
15 3 elrab y + 1 x | φ y + 1 θ
16 13 14 15 3imtr4g y y x | φ y + 1 x | φ
17 10 16 mpcom y x | φ y + 1 x | φ
18 17 rgen y x | φ y + 1 x | φ
19 peano5nni 1 x | φ y x | φ y + 1 x | φ x | φ
20 9 18 19 mp2an x | φ
21 20 sseli A A x | φ
22 4 elrab A x | φ A τ
23 21 22 sylib A A τ
24 23 simprd A τ