Metamath Proof Explorer


Theorem nn0ind

Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004)

Ref Expression
Hypotheses nn0ind.1 x=0φψ
nn0ind.2 x=yφχ
nn0ind.3 x=y+1φθ
nn0ind.4 x=Aφτ
nn0ind.5 ψ
nn0ind.6 y0χθ
Assertion nn0ind A0τ

Proof

Step Hyp Ref Expression
1 nn0ind.1 x=0φψ
2 nn0ind.2 x=yφχ
3 nn0ind.3 x=y+1φθ
4 nn0ind.4 x=Aφτ
5 nn0ind.5 ψ
6 nn0ind.6 y0χθ
7 elnn0z A0A0A
8 0z 0
9 5 a1i 0ψ
10 elnn0z y0y0y
11 10 6 sylbir y0yχθ
12 11 3adant1 0y0yχθ
13 1 2 3 4 9 12 uzind 0A0Aτ
14 8 13 mp3an1 A0Aτ
15 7 14 sylbi A0τ