Step |
Hyp |
Ref |
Expression |
1 |
|
uzind.1 |
|
2 |
|
uzind.2 |
|
3 |
|
uzind.3 |
|
4 |
|
uzind.4 |
|
5 |
|
uzind.5 |
|
6 |
|
uzind.6 |
|
7 |
|
zre |
|
8 |
7
|
leidd |
|
9 |
8 5
|
jca |
|
10 |
9
|
ancli |
|
11 |
|
breq2 |
|
12 |
11 1
|
anbi12d |
|
13 |
12
|
elrab |
|
14 |
10 13
|
sylibr |
|
15 |
|
peano2z |
|
16 |
15
|
a1i |
|
17 |
16
|
adantrd |
|
18 |
|
zre |
|
19 |
|
ltp1 |
|
20 |
19
|
adantl |
|
21 |
|
peano2re |
|
22 |
21
|
ancli |
|
23 |
|
lelttr |
|
24 |
23
|
3expb |
|
25 |
22 24
|
sylan2 |
|
26 |
20 25
|
mpan2d |
|
27 |
|
ltle |
|
28 |
21 27
|
sylan2 |
|
29 |
26 28
|
syld |
|
30 |
7 18 29
|
syl2an |
|
31 |
30
|
adantrd |
|
32 |
31
|
expimpd |
|
33 |
6
|
3exp |
|
34 |
33
|
imp4d |
|
35 |
32 34
|
jcad |
|
36 |
17 35
|
jcad |
|
37 |
|
breq2 |
|
38 |
37 2
|
anbi12d |
|
39 |
38
|
elrab |
|
40 |
|
breq2 |
|
41 |
40 3
|
anbi12d |
|
42 |
41
|
elrab |
|
43 |
36 39 42
|
3imtr4g |
|
44 |
43
|
ralrimiv |
|
45 |
|
peano5uzti |
|
46 |
14 44 45
|
mp2and |
|
47 |
46
|
sseld |
|
48 |
|
breq2 |
|
49 |
48
|
elrab |
|
50 |
|
breq2 |
|
51 |
50 4
|
anbi12d |
|
52 |
51
|
elrab |
|
53 |
47 49 52
|
3imtr3g |
|
54 |
53
|
3impib |
|
55 |
54
|
simprrd |
|