Description: Induction on the upper integers that startafter an integer M . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uzind2.1 | |
|
uzind2.2 | |
||
uzind2.3 | |
||
uzind2.4 | |
||
uzind2.5 | |
||
uzind2.6 | |
||
Assertion | uzind2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzind2.1 | |
|
2 | uzind2.2 | |
|
3 | uzind2.3 | |
|
4 | uzind2.4 | |
|
5 | uzind2.5 | |
|
6 | uzind2.6 | |
|
7 | zltp1le | |
|
8 | peano2z | |
|
9 | 1 | imbi2d | |
10 | 2 | imbi2d | |
11 | 3 | imbi2d | |
12 | 4 | imbi2d | |
13 | 5 | a1i | |
14 | zltp1le | |
|
15 | 6 | 3expia | |
16 | 14 15 | sylbird | |
17 | 16 | ex | |
18 | 17 | com3l | |
19 | 18 | imp | |
20 | 19 | 3adant1 | |
21 | 20 | a2d | |
22 | 9 10 11 12 13 21 | uzind | |
23 | 22 | 3exp | |
24 | 8 23 | syl | |
25 | 24 | com34 | |
26 | 25 | pm2.43a | |
27 | 26 | imp | |
28 | 7 27 | sylbid | |
29 | 28 | 3impia | |