Metamath Proof Explorer


Theorem uzind2

Description: Induction on the upper integers that startafter an integer M . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005)

Ref Expression
Hypotheses uzind2.1 j = M + 1 φ ψ
uzind2.2 j = k φ χ
uzind2.3 j = k + 1 φ θ
uzind2.4 j = N φ τ
uzind2.5 M ψ
uzind2.6 M k M < k χ θ
Assertion uzind2 M N M < N τ

Proof

Step Hyp Ref Expression
1 uzind2.1 j = M + 1 φ ψ
2 uzind2.2 j = k φ χ
3 uzind2.3 j = k + 1 φ θ
4 uzind2.4 j = N φ τ
5 uzind2.5 M ψ
6 uzind2.6 M k M < k χ θ
7 zltp1le M N M < N M + 1 N
8 peano2z M M + 1
9 1 imbi2d j = M + 1 M φ M ψ
10 2 imbi2d j = k M φ M χ
11 3 imbi2d j = k + 1 M φ M θ
12 4 imbi2d j = N M φ M τ
13 5 a1i M + 1 M ψ
14 zltp1le M k M < k M + 1 k
15 6 3expia M k M < k χ θ
16 14 15 sylbird M k M + 1 k χ θ
17 16 ex M k M + 1 k χ θ
18 17 com3l k M + 1 k M χ θ
19 18 imp k M + 1 k M χ θ
20 19 3adant1 M + 1 k M + 1 k M χ θ
21 20 a2d M + 1 k M + 1 k M χ M θ
22 9 10 11 12 13 21 uzind M + 1 N M + 1 N M τ
23 22 3exp M + 1 N M + 1 N M τ
24 8 23 syl M N M + 1 N M τ
25 24 com34 M N M M + 1 N τ
26 25 pm2.43a M N M + 1 N τ
27 26 imp M N M + 1 N τ
28 7 27 sylbid M N M < N τ
29 28 3impia M N M < N τ