| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzind2.1 | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | uzind2.2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | uzind2.3 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | uzind2.4 | ⊢ ( 𝑗  =  𝑁  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | uzind2.5 | ⊢ ( 𝑀  ∈  ℤ  →  𝜓 ) | 
						
							| 6 |  | uzind2.6 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  𝑀  <  𝑘 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | zltp1le | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  <  𝑁  ↔  ( 𝑀  +  1 )  ≤  𝑁 ) ) | 
						
							| 8 |  | peano2z | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 9 | 1 | imbi2d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( ( 𝑀  ∈  ℤ  →  𝜑 )  ↔  ( 𝑀  ∈  ℤ  →  𝜓 ) ) ) | 
						
							| 10 | 2 | imbi2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑀  ∈  ℤ  →  𝜑 )  ↔  ( 𝑀  ∈  ℤ  →  𝜒 ) ) ) | 
						
							| 11 | 3 | imbi2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑀  ∈  ℤ  →  𝜑 )  ↔  ( 𝑀  ∈  ℤ  →  𝜃 ) ) ) | 
						
							| 12 | 4 | imbi2d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑀  ∈  ℤ  →  𝜑 )  ↔  ( 𝑀  ∈  ℤ  →  𝜏 ) ) ) | 
						
							| 13 | 5 | a1i | ⊢ ( ( 𝑀  +  1 )  ∈  ℤ  →  ( 𝑀  ∈  ℤ  →  𝜓 ) ) | 
						
							| 14 |  | zltp1le | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑀  <  𝑘  ↔  ( 𝑀  +  1 )  ≤  𝑘 ) ) | 
						
							| 15 | 6 | 3expia | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑀  <  𝑘  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 16 | 14 15 | sylbird | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑀  +  1 )  ≤  𝑘  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑘  ∈  ℤ  →  ( ( 𝑀  +  1 )  ≤  𝑘  →  ( 𝜒  →  𝜃 ) ) ) ) | 
						
							| 18 | 17 | com3l | ⊢ ( 𝑘  ∈  ℤ  →  ( ( 𝑀  +  1 )  ≤  𝑘  →  ( 𝑀  ∈  ℤ  →  ( 𝜒  →  𝜃 ) ) ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( 𝑘  ∈  ℤ  ∧  ( 𝑀  +  1 )  ≤  𝑘 )  →  ( 𝑀  ∈  ℤ  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 20 | 19 | 3adant1 | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  ( 𝑀  +  1 )  ≤  𝑘 )  →  ( 𝑀  ∈  ℤ  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 21 | 20 | a2d | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  ( 𝑀  +  1 )  ≤  𝑘 )  →  ( ( 𝑀  ∈  ℤ  →  𝜒 )  →  ( 𝑀  ∈  ℤ  →  𝜃 ) ) ) | 
						
							| 22 | 9 10 11 12 13 21 | uzind | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ( 𝑀  +  1 )  ≤  𝑁 )  →  ( 𝑀  ∈  ℤ  →  𝜏 ) ) | 
						
							| 23 | 22 | 3exp | ⊢ ( ( 𝑀  +  1 )  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( ( 𝑀  +  1 )  ≤  𝑁  →  ( 𝑀  ∈  ℤ  →  𝜏 ) ) ) ) | 
						
							| 24 | 8 23 | syl | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( ( 𝑀  +  1 )  ≤  𝑁  →  ( 𝑀  ∈  ℤ  →  𝜏 ) ) ) ) | 
						
							| 25 | 24 | com34 | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( 𝑀  ∈  ℤ  →  ( ( 𝑀  +  1 )  ≤  𝑁  →  𝜏 ) ) ) ) | 
						
							| 26 | 25 | pm2.43a | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( ( 𝑀  +  1 )  ≤  𝑁  →  𝜏 ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  +  1 )  ≤  𝑁  →  𝜏 ) ) | 
						
							| 28 | 7 27 | sylbid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  <  𝑁  →  𝜏 ) ) | 
						
							| 29 | 28 | 3impia | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  <  𝑁 )  →  𝜏 ) |