| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzind3.1 | ⊢ ( 𝑗  =  𝑀  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | uzind3.2 | ⊢ ( 𝑗  =  𝑚  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | uzind3.3 | ⊢ ( 𝑗  =  ( 𝑚  +  1 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | uzind3.4 | ⊢ ( 𝑗  =  𝑁  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | uzind3.5 | ⊢ ( 𝑀  ∈  ℤ  →  𝜓 ) | 
						
							| 6 |  | uzind3.6 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑚  ∈  { 𝑘  ∈  ℤ  ∣  𝑀  ≤  𝑘 } )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑘  =  𝑁  →  ( 𝑀  ≤  𝑘  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 8 | 7 | elrab | ⊢ ( 𝑁  ∈  { 𝑘  ∈  ℤ  ∣  𝑀  ≤  𝑘 }  ↔  ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 9 |  | breq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑀  ≤  𝑘  ↔  𝑀  ≤  𝑚 ) ) | 
						
							| 10 | 9 | elrab | ⊢ ( 𝑚  ∈  { 𝑘  ∈  ℤ  ∣  𝑀  ≤  𝑘 }  ↔  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚 ) ) | 
						
							| 11 | 10 6 | sylan2br | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚 ) )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 12 | 11 | 3impb | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑚  ∈  ℤ  ∧  𝑀  ≤  𝑚 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 13 | 1 2 3 4 5 12 | uzind | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  𝜏 ) | 
						
							| 14 | 13 | 3expb | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) )  →  𝜏 ) | 
						
							| 15 | 8 14 | sylan2b | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  { 𝑘  ∈  ℤ  ∣  𝑀  ≤  𝑘 } )  →  𝜏 ) |