| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzind.1 | ⊢ ( 𝑗  =  𝑀  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | uzind.2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | uzind.3 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 4 |  | uzind.4 | ⊢ ( 𝑗  =  𝑁  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 5 |  | uzind.5 | ⊢ ( 𝑀  ∈  ℤ  →  𝜓 ) | 
						
							| 6 |  | uzind.6 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  𝑀  ≤  𝑘 )  →  ( 𝜒  →  𝜃 ) ) | 
						
							| 7 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 8 | 7 | leidd | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ≤  𝑀 ) | 
						
							| 9 | 8 5 | jca | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  ≤  𝑀  ∧  𝜓 ) ) | 
						
							| 10 | 9 | ancli | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  ∈  ℤ  ∧  ( 𝑀  ≤  𝑀  ∧  𝜓 ) ) ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑗  =  𝑀  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  𝑀 ) ) | 
						
							| 12 | 11 1 | anbi12d | ⊢ ( 𝑗  =  𝑀  →  ( ( 𝑀  ≤  𝑗  ∧  𝜑 )  ↔  ( 𝑀  ≤  𝑀  ∧  𝜓 ) ) ) | 
						
							| 13 | 12 | elrab | ⊢ ( 𝑀  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) }  ↔  ( 𝑀  ∈  ℤ  ∧  ( 𝑀  ≤  𝑀  ∧  𝜓 ) ) ) | 
						
							| 14 | 10 13 | sylibr | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } ) | 
						
							| 15 |  | peano2z | ⊢ ( 𝑘  ∈  ℤ  →  ( 𝑘  +  1 )  ∈  ℤ ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑘  ∈  ℤ  →  ( 𝑘  +  1 )  ∈  ℤ ) ) | 
						
							| 17 | 16 | adantrd | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑘  ∈  ℤ  ∧  ( 𝑀  ≤  𝑘  ∧  𝜒 ) )  →  ( 𝑘  +  1 )  ∈  ℤ ) ) | 
						
							| 18 |  | zre | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ ) | 
						
							| 19 |  | ltp1 | ⊢ ( 𝑘  ∈  ℝ  →  𝑘  <  ( 𝑘  +  1 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  𝑘  <  ( 𝑘  +  1 ) ) | 
						
							| 21 |  | peano2re | ⊢ ( 𝑘  ∈  ℝ  →  ( 𝑘  +  1 )  ∈  ℝ ) | 
						
							| 22 | 21 | ancli | ⊢ ( 𝑘  ∈  ℝ  →  ( 𝑘  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ ) ) | 
						
							| 23 |  | lelttr | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ )  →  ( ( 𝑀  ≤  𝑘  ∧  𝑘  <  ( 𝑘  +  1 ) )  →  𝑀  <  ( 𝑘  +  1 ) ) ) | 
						
							| 24 | 23 | 3expb | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( 𝑘  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ ) )  →  ( ( 𝑀  ≤  𝑘  ∧  𝑘  <  ( 𝑘  +  1 ) )  →  𝑀  <  ( 𝑘  +  1 ) ) ) | 
						
							| 25 | 22 24 | sylan2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( ( 𝑀  ≤  𝑘  ∧  𝑘  <  ( 𝑘  +  1 ) )  →  𝑀  <  ( 𝑘  +  1 ) ) ) | 
						
							| 26 | 20 25 | mpan2d | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( 𝑀  ≤  𝑘  →  𝑀  <  ( 𝑘  +  1 ) ) ) | 
						
							| 27 |  | ltle | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( 𝑘  +  1 )  ∈  ℝ )  →  ( 𝑀  <  ( 𝑘  +  1 )  →  𝑀  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 28 | 21 27 | sylan2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( 𝑀  <  ( 𝑘  +  1 )  →  𝑀  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 29 | 26 28 | syld | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( 𝑀  ≤  𝑘  →  𝑀  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 30 | 7 18 29 | syl2an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑀  ≤  𝑘  →  𝑀  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 31 | 30 | adantrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑀  ≤  𝑘  ∧  𝜒 )  →  𝑀  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 32 | 31 | expimpd | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑘  ∈  ℤ  ∧  ( 𝑀  ≤  𝑘  ∧  𝜒 ) )  →  𝑀  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 33 | 6 | 3exp | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑘  ∈  ℤ  →  ( 𝑀  ≤  𝑘  →  ( 𝜒  →  𝜃 ) ) ) ) | 
						
							| 34 | 33 | imp4d | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑘  ∈  ℤ  ∧  ( 𝑀  ≤  𝑘  ∧  𝜒 ) )  →  𝜃 ) ) | 
						
							| 35 | 32 34 | jcad | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑘  ∈  ℤ  ∧  ( 𝑀  ≤  𝑘  ∧  𝜒 ) )  →  ( 𝑀  ≤  ( 𝑘  +  1 )  ∧  𝜃 ) ) ) | 
						
							| 36 | 17 35 | jcad | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑘  ∈  ℤ  ∧  ( 𝑀  ≤  𝑘  ∧  𝜒 ) )  →  ( ( 𝑘  +  1 )  ∈  ℤ  ∧  ( 𝑀  ≤  ( 𝑘  +  1 )  ∧  𝜃 ) ) ) ) | 
						
							| 37 |  | breq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  𝑘 ) ) | 
						
							| 38 | 37 2 | anbi12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝑀  ≤  𝑗  ∧  𝜑 )  ↔  ( 𝑀  ≤  𝑘  ∧  𝜒 ) ) ) | 
						
							| 39 | 38 | elrab | ⊢ ( 𝑘  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) }  ↔  ( 𝑘  ∈  ℤ  ∧  ( 𝑀  ≤  𝑘  ∧  𝜒 ) ) ) | 
						
							| 40 |  | breq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  ( 𝑘  +  1 ) ) ) | 
						
							| 41 | 40 3 | anbi12d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝑀  ≤  𝑗  ∧  𝜑 )  ↔  ( 𝑀  ≤  ( 𝑘  +  1 )  ∧  𝜃 ) ) ) | 
						
							| 42 | 41 | elrab | ⊢ ( ( 𝑘  +  1 )  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) }  ↔  ( ( 𝑘  +  1 )  ∈  ℤ  ∧  ( 𝑀  ≤  ( 𝑘  +  1 )  ∧  𝜃 ) ) ) | 
						
							| 43 | 36 39 42 | 3imtr4g | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑘  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) }  →  ( 𝑘  +  1 )  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } ) ) | 
						
							| 44 | 43 | ralrimiv | ⊢ ( 𝑀  ∈  ℤ  →  ∀ 𝑘  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } ( 𝑘  +  1 )  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } ) | 
						
							| 45 |  | peano5uzti | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) }  ∧  ∀ 𝑘  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } ( 𝑘  +  1 )  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } )  →  { 𝑤  ∈  ℤ  ∣  𝑀  ≤  𝑤 }  ⊆  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } ) ) | 
						
							| 46 | 14 44 45 | mp2and | ⊢ ( 𝑀  ∈  ℤ  →  { 𝑤  ∈  ℤ  ∣  𝑀  ≤  𝑤 }  ⊆  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } ) | 
						
							| 47 | 46 | sseld | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  { 𝑤  ∈  ℤ  ∣  𝑀  ≤  𝑤 }  →  𝑁  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) } ) ) | 
						
							| 48 |  | breq2 | ⊢ ( 𝑤  =  𝑁  →  ( 𝑀  ≤  𝑤  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 49 | 48 | elrab | ⊢ ( 𝑁  ∈  { 𝑤  ∈  ℤ  ∣  𝑀  ≤  𝑤 }  ↔  ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 ) ) | 
						
							| 50 |  | breq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑀  ≤  𝑗  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 51 | 50 4 | anbi12d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑀  ≤  𝑗  ∧  𝜑 )  ↔  ( 𝑀  ≤  𝑁  ∧  𝜏 ) ) ) | 
						
							| 52 | 51 | elrab | ⊢ ( 𝑁  ∈  { 𝑗  ∈  ℤ  ∣  ( 𝑀  ≤  𝑗  ∧  𝜑 ) }  ↔  ( 𝑁  ∈  ℤ  ∧  ( 𝑀  ≤  𝑁  ∧  𝜏 ) ) ) | 
						
							| 53 | 47 49 52 | 3imtr3g | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  ( 𝑁  ∈  ℤ  ∧  ( 𝑀  ≤  𝑁  ∧  𝜏 ) ) ) ) | 
						
							| 54 | 53 | 3impib | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  ( 𝑁  ∈  ℤ  ∧  ( 𝑀  ≤  𝑁  ∧  𝜏 ) ) ) | 
						
							| 55 | 54 | simprrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ≤  𝑁 )  →  𝜏 ) |