Metamath Proof Explorer


Theorem peano5uzti

Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005) (Revised by Mario Carneiro, 25-Jul-2013)

Ref Expression
Assertion peano5uzti ( 𝑁 ∈ ℤ → ( ( 𝑁𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } ⊆ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( 𝑁𝐴 ↔ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ 𝐴 ) )
2 1 anbi1d ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( ( 𝑁𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) ↔ ( if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) ) )
3 breq1 ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( 𝑁𝑘 ↔ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 ) )
4 3 rabbidv ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } = { 𝑘 ∈ ℤ ∣ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 } )
5 4 sseq1d ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } ⊆ 𝐴 ↔ { 𝑘 ∈ ℤ ∣ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 } ⊆ 𝐴 ) )
6 2 5 imbi12d ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( ( ( 𝑁𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } ⊆ 𝐴 ) ↔ ( ( if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 } ⊆ 𝐴 ) ) )
7 1z 1 ∈ ℤ
8 7 elimel if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ ℤ
9 8 peano5uzi ( ( if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 } ⊆ 𝐴 )
10 6 9 dedth ( 𝑁 ∈ ℤ → ( ( 𝑁𝐴 ∧ ∀ 𝑥𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ 𝑁𝑘 } ⊆ 𝐴 ) )