Metamath Proof Explorer


Theorem rabbidv

Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995)

Ref Expression
Hypothesis rabbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rabbidv ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 rabbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 rabbidva ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑥𝐴𝜒 } )