Metamath Proof Explorer


Theorem rabbidv

Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995)

Ref Expression
Hypothesis rabbidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion rabbidv
|- ( ph -> { x e. A | ps } = { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 rabbidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 rabbidva
 |-  ( ph -> { x e. A | ps } = { x e. A | ch } )