Metamath Proof Explorer


Theorem rabbidva

Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003) (Proof shortened by SN, 3-Dec-2023)

Ref Expression
Hypothesis rabbidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rabbidva
|- ( ph -> { x e. A | ps } = { x e. A | ch } )

Proof

Step Hyp Ref Expression
1 rabbidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 1 pm5.32da
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
3 2 rabbidva2
 |-  ( ph -> { x e. A | ps } = { x e. A | ch } )