Metamath Proof Explorer


Theorem peano5uzti

Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005) (Revised by Mario Carneiro, 25-Jul-2013)

Ref Expression
Assertion peano5uzti NNAxAx+1Ak|NkA

Proof

Step Hyp Ref Expression
1 eleq1 N=ifNN1NAifNN1A
2 1 anbi1d N=ifNN1NAxAx+1AifNN1AxAx+1A
3 breq1 N=ifNN1NkifNN1k
4 3 rabbidv N=ifNN1k|Nk=k|ifNN1k
5 4 sseq1d N=ifNN1k|NkAk|ifNN1kA
6 2 5 imbi12d N=ifNN1NAxAx+1Ak|NkAifNN1AxAx+1Ak|ifNN1kA
7 1z 1
8 7 elimel ifNN1
9 8 peano5uzi ifNN1AxAx+1Ak|ifNN1kA
10 6 9 dedth NNAxAx+1Ak|NkA