| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfuzi.1 | ⊢ 𝑁  ∈  ℤ | 
						
							| 2 |  | ssintab | ⊢ ( { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ⊆  ∩  { 𝑥  ∣  ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 ) }  ↔  ∀ 𝑥 ( ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 )  →  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ⊆  𝑥 ) ) | 
						
							| 3 | 1 | peano5uzi | ⊢ ( ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 )  →  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ⊆  𝑥 ) | 
						
							| 4 | 2 3 | mpgbir | ⊢ { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ⊆  ∩  { 𝑥  ∣  ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 ) } | 
						
							| 5 | 1 | zrei | ⊢ 𝑁  ∈  ℝ | 
						
							| 6 | 5 | leidi | ⊢ 𝑁  ≤  𝑁 | 
						
							| 7 |  | breq2 | ⊢ ( 𝑧  =  𝑁  →  ( 𝑁  ≤  𝑧  ↔  𝑁  ≤  𝑁 ) ) | 
						
							| 8 | 7 | elrab | ⊢ ( 𝑁  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ↔  ( 𝑁  ∈  ℤ  ∧  𝑁  ≤  𝑁 ) ) | 
						
							| 9 | 1 6 8 | mpbir2an | ⊢ 𝑁  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } | 
						
							| 10 |  | peano2uz2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } )  →  ( 𝑦  +  1 )  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ) | 
						
							| 11 | 1 10 | mpan | ⊢ ( 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  →  ( 𝑦  +  1 )  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ) | 
						
							| 12 | 11 | rgen | ⊢ ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ( 𝑦  +  1 )  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } | 
						
							| 13 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 14 | 13 | rabex | ⊢ { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ∈  V | 
						
							| 15 |  | eleq2 | ⊢ ( 𝑥  =  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  →  ( 𝑁  ∈  𝑥  ↔  𝑁  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ) ) | 
						
							| 16 |  | eleq2 | ⊢ ( 𝑥  =  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  →  ( ( 𝑦  +  1 )  ∈  𝑥  ↔  ( 𝑦  +  1 )  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ) ) | 
						
							| 17 | 16 | raleqbi1dv | ⊢ ( 𝑥  =  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥  ↔  ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ( 𝑦  +  1 )  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ) ) | 
						
							| 18 | 15 17 | anbi12d | ⊢ ( 𝑥  =  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  →  ( ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 )  ↔  ( 𝑁  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ( 𝑦  +  1 )  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ) ) ) | 
						
							| 19 | 14 18 | elab | ⊢ ( { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ∈  { 𝑥  ∣  ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 ) }  ↔  ( 𝑁  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ∧  ∀ 𝑦  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ( 𝑦  +  1 )  ∈  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ) ) | 
						
							| 20 | 9 12 19 | mpbir2an | ⊢ { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ∈  { 𝑥  ∣  ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 ) } | 
						
							| 21 |  | intss1 | ⊢ ( { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  ∈  { 𝑥  ∣  ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 ) }  →  ∩  { 𝑥  ∣  ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 ) }  ⊆  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ ∩  { 𝑥  ∣  ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 ) }  ⊆  { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 } | 
						
							| 23 | 4 22 | eqssi | ⊢ { 𝑧  ∈  ℤ  ∣  𝑁  ≤  𝑧 }  =  ∩  { 𝑥  ∣  ( 𝑁  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑦  +  1 )  ∈  𝑥 ) } |