Metamath Proof Explorer


Theorem dfnn2

Description: Alternate definition of the set of positive integers. This was our original definition, before the current df-nn replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013) (Revised by Mario Carneiro, 3-May-2014)

Ref Expression
Assertion dfnn2 ℕ = { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) }

Proof

Step Hyp Ref Expression
1 1ex 1 ∈ V
2 1 elintab ( 1 ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 1 ∈ 𝑥 ) )
3 simpl ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 1 ∈ 𝑥 )
4 2 3 mpgbir 1 ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) }
5 oveq1 ( 𝑦 = 𝑧 → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) )
6 5 eleq1d ( 𝑦 = 𝑧 → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑧 + 1 ) ∈ 𝑥 ) )
7 6 rspccv ( ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 → ( 𝑧𝑥 → ( 𝑧 + 1 ) ∈ 𝑥 ) )
8 7 adantl ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧𝑥 → ( 𝑧 + 1 ) ∈ 𝑥 ) )
9 8 a2i ( ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧𝑥 ) → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) )
10 9 alimi ( ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧𝑥 ) → ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) )
11 vex 𝑧 ∈ V
12 11 elintab ( 𝑧 { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧𝑥 ) )
13 ovex ( 𝑧 + 1 ) ∈ V
14 13 elintab ( ( 𝑧 + 1 ) ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) )
15 10 12 14 3imtr4i ( 𝑧 { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } → ( 𝑧 + 1 ) ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } )
16 15 rgen 𝑧 { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ( 𝑧 + 1 ) ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) }
17 peano5nni ( ( 1 ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ∧ ∀ 𝑧 { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ( 𝑧 + 1 ) ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ) → ℕ ⊆ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } )
18 4 16 17 mp2an ℕ ⊆ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) }
19 1nn 1 ∈ ℕ
20 peano2nn ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ )
21 20 rgen 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ
22 nnex ℕ ∈ V
23 eleq2 ( 𝑥 = ℕ → ( 1 ∈ 𝑥 ↔ 1 ∈ ℕ ) )
24 eleq2 ( 𝑥 = ℕ → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑦 + 1 ) ∈ ℕ ) )
25 24 raleqbi1dv ( 𝑥 = ℕ → ( ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) )
26 23 25 anbi12d ( 𝑥 = ℕ → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ↔ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) )
27 22 26 elab ( ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) )
28 19 21 27 mpbir2an ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) }
29 intss1 ( ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } → { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ⊆ ℕ )
30 28 29 ax-mp { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ⊆ ℕ
31 18 30 eqssi ℕ = { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) }