Step |
Hyp |
Ref |
Expression |
1 |
|
1ex |
⊢ 1 ∈ V |
2 |
1
|
elintab |
⊢ ( 1 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 1 ∈ 𝑥 ) ) |
3 |
|
simpl |
⊢ ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 1 ∈ 𝑥 ) |
4 |
2 3
|
mpgbir |
⊢ 1 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
5 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 + 1 ) = ( 𝑧 + 1 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
7 |
6
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 → ( 𝑧 ∈ 𝑥 → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
8 |
7
|
adantl |
⊢ ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 ∈ 𝑥 → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
9 |
8
|
a2i |
⊢ ( ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
10 |
9
|
alimi |
⊢ ( ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) → ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
11 |
|
vex |
⊢ 𝑧 ∈ V |
12 |
11
|
elintab |
⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
13 |
|
ovex |
⊢ ( 𝑧 + 1 ) ∈ V |
14 |
13
|
elintab |
⊢ ( ( 𝑧 + 1 ) ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) → ( 𝑧 + 1 ) ∈ 𝑥 ) ) |
15 |
10 12 14
|
3imtr4i |
⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } → ( 𝑧 + 1 ) ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ) |
16 |
15
|
rgen |
⊢ ∀ 𝑧 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ( 𝑧 + 1 ) ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
17 |
|
peano5nni |
⊢ ( ( 1 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ∧ ∀ 𝑧 ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ( 𝑧 + 1 ) ∈ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ) → ℕ ⊆ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ) |
18 |
4 16 17
|
mp2an |
⊢ ℕ ⊆ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
19 |
|
1nn |
⊢ 1 ∈ ℕ |
20 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
21 |
20
|
rgen |
⊢ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ |
22 |
|
nnex |
⊢ ℕ ∈ V |
23 |
|
eleq2 |
⊢ ( 𝑥 = ℕ → ( 1 ∈ 𝑥 ↔ 1 ∈ ℕ ) ) |
24 |
|
eleq2 |
⊢ ( 𝑥 = ℕ → ( ( 𝑦 + 1 ) ∈ 𝑥 ↔ ( 𝑦 + 1 ) ∈ ℕ ) ) |
25 |
24
|
raleqbi1dv |
⊢ ( 𝑥 = ℕ → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) |
26 |
23 25
|
anbi12d |
⊢ ( 𝑥 = ℕ → ( ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) ↔ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) ) |
27 |
22 26
|
elab |
⊢ ( ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ↔ ( 1 ∈ ℕ ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 + 1 ) ∈ ℕ ) ) |
28 |
19 21 27
|
mpbir2an |
⊢ ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |
29 |
|
intss1 |
⊢ ( ℕ ∈ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } → ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ⊆ ℕ ) |
30 |
28 29
|
ax-mp |
⊢ ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } ⊆ ℕ |
31 |
18 30
|
eqssi |
⊢ ℕ = ∩ { 𝑥 ∣ ( 1 ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 + 1 ) ∈ 𝑥 ) } |