| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nn | ⊢ ℕ  =  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  “  ω ) | 
						
							| 2 |  | df-ima | ⊢ ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  “  ω )  =  ran  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) | 
						
							| 3 | 1 2 | eqtri | ⊢ ℕ  =  ran  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) | 
						
							| 4 |  | frfnom | ⊢ ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω )  Fn  ω | 
						
							| 5 | 4 | a1i | ⊢ ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω )  Fn  ω ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑦  =  ∅  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  =  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ ∅ ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑦  =  ∅  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  ∈  𝐴  ↔  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ ∅ )  ∈  𝐴 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑦  =  𝑧  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  =  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  ∈  𝐴  ↔  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐴 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑦  =  suc  𝑧  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  =  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ suc  𝑧 ) ) | 
						
							| 11 | 10 | eleq1d | ⊢ ( 𝑦  =  suc  𝑧  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  ∈  𝐴  ↔  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ suc  𝑧 )  ∈  𝐴 ) ) | 
						
							| 12 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 13 |  | fr0g | ⊢ ( 1  ∈  ℂ  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ ∅ )  =  1 ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ ∅ )  =  1 | 
						
							| 15 |  | simpl | ⊢ ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  1  ∈  𝐴 ) | 
						
							| 16 | 14 15 | eqeltrid | ⊢ ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ ∅ )  ∈  𝐴 ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑥  =  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  →  ( 𝑥  +  1 )  =  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑥  =  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  →  ( ( 𝑥  +  1 )  ∈  𝐴  ↔  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 )  ∈  𝐴 ) ) | 
						
							| 19 | 18 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐴  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 )  ∈  𝐴 ) ) | 
						
							| 20 | 19 | ad2antlr | ⊢ ( ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  ∧  𝑧  ∈  ω )  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐴  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 )  ∈  𝐴 ) ) | 
						
							| 21 |  | ovex | ⊢ ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 )  ∈  V | 
						
							| 22 |  | eqid | ⊢ ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω )  =  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑦  =  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  →  ( 𝑦  +  1 )  =  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 ) ) | 
						
							| 25 | 22 23 24 | frsucmpt2 | ⊢ ( ( 𝑧  ∈  ω  ∧  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 )  ∈  V )  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ suc  𝑧 )  =  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 ) ) | 
						
							| 26 | 21 25 | mpan2 | ⊢ ( 𝑧  ∈  ω  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ suc  𝑧 )  =  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑧  ∈  ω  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ suc  𝑧 )  ∈  𝐴  ↔  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 )  ∈  𝐴 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  ∧  𝑧  ∈  ω )  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ suc  𝑧 )  ∈  𝐴  ↔  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  +  1 )  ∈  𝐴 ) ) | 
						
							| 29 | 20 28 | sylibrd | ⊢ ( ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  ∧  𝑧  ∈  ω )  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐴  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ suc  𝑧 )  ∈  𝐴 ) ) | 
						
							| 30 | 29 | expcom | ⊢ ( 𝑧  ∈  ω  →  ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ( ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑧 )  ∈  𝐴  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ suc  𝑧 )  ∈  𝐴 ) ) ) | 
						
							| 31 | 7 9 11 16 30 | finds2 | ⊢ ( 𝑦  ∈  ω  →  ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  ∈  𝐴 ) ) | 
						
							| 32 | 31 | com12 | ⊢ ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ( 𝑦  ∈  ω  →  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  ∈  𝐴 ) ) | 
						
							| 33 | 32 | ralrimiv | ⊢ ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ∀ 𝑦  ∈  ω ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  ∈  𝐴 ) | 
						
							| 34 |  | ffnfv | ⊢ ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) : ω ⟶ 𝐴  ↔  ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω )  Fn  ω  ∧  ∀ 𝑦  ∈  ω ( ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) ‘ 𝑦 )  ∈  𝐴 ) ) | 
						
							| 35 | 5 33 34 | sylanbrc | ⊢ ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω ) : ω ⟶ 𝐴 ) | 
						
							| 36 | 35 | frnd | ⊢ ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ran  ( rec ( ( 𝑛  ∈  V  ↦  ( 𝑛  +  1 ) ) ,  1 )  ↾  ω )  ⊆  𝐴 ) | 
						
							| 37 | 3 36 | eqsstrid | ⊢ ( ( 1  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  +  1 )  ∈  𝐴 )  →  ℕ  ⊆  𝐴 ) |