Metamath Proof Explorer
		
		
		
		Description:  The positive integers are a subset of the reals.  (Contributed by NM, 10-Jan-1997)  (Revised by Mario Carneiro, 16-Jun-2013)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | nnssre | ⊢  ℕ  ⊆  ℝ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 |  | peano2re | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 3 | 2 | rgen | ⊢ ∀ 𝑥  ∈  ℝ ( 𝑥  +  1 )  ∈  ℝ | 
						
							| 4 |  | peano5nni | ⊢ ( ( 1  ∈  ℝ  ∧  ∀ 𝑥  ∈  ℝ ( 𝑥  +  1 )  ∈  ℝ )  →  ℕ  ⊆  ℝ ) | 
						
							| 5 | 1 3 4 | mp2an | ⊢ ℕ  ⊆  ℝ |