Metamath Proof Explorer


Theorem dfnn2

Description: Alternate definition of the set of positive integers. This was our original definition, before the current df-nn replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013) (Revised by Mario Carneiro, 3-May-2014)

Ref Expression
Assertion dfnn2 =x|1xyxy+1x

Proof

Step Hyp Ref Expression
1 1ex 1V
2 1 elintab 1x|1xyxy+1xx1xyxy+1x1x
3 simpl 1xyxy+1x1x
4 2 3 mpgbir 1x|1xyxy+1x
5 oveq1 y=zy+1=z+1
6 5 eleq1d y=zy+1xz+1x
7 6 rspccv yxy+1xzxz+1x
8 7 adantl 1xyxy+1xzxz+1x
9 8 a2i 1xyxy+1xzx1xyxy+1xz+1x
10 9 alimi x1xyxy+1xzxx1xyxy+1xz+1x
11 vex zV
12 11 elintab zx|1xyxy+1xx1xyxy+1xzx
13 ovex z+1V
14 13 elintab z+1x|1xyxy+1xx1xyxy+1xz+1x
15 10 12 14 3imtr4i zx|1xyxy+1xz+1x|1xyxy+1x
16 15 rgen zx|1xyxy+1xz+1x|1xyxy+1x
17 peano5nni 1x|1xyxy+1xzx|1xyxy+1xz+1x|1xyxy+1xx|1xyxy+1x
18 4 16 17 mp2an x|1xyxy+1x
19 1nn 1
20 peano2nn yy+1
21 20 rgen yy+1
22 nnex V
23 eleq2 x=1x1
24 eleq2 x=y+1xy+1
25 24 raleqbi1dv x=yxy+1xyy+1
26 23 25 anbi12d x=1xyxy+1x1yy+1
27 22 26 elab x|1xyxy+1x1yy+1
28 19 21 27 mpbir2an x|1xyxy+1x
29 intss1 x|1xyxy+1xx|1xyxy+1x
30 28 29 ax-mp x|1xyxy+1x
31 18 30 eqssi =x|1xyxy+1x