Metamath Proof Explorer


Theorem dfnn3

Description: Alternate definition of the set of positive integers. Definition of positive integers in Apostol p. 22. (Contributed by NM, 3-Jul-2005)

Ref Expression
Assertion dfnn3 =x|x1xyxy+1x

Proof

Step Hyp Ref Expression
1 eleq2 x=z1x1z
2 eleq2 x=zy+1xy+1z
3 2 raleqbi1dv x=zyxy+1xyzy+1z
4 1 3 anbi12d x=z1xyxy+1x1zyzy+1z
5 dfnn2 =z|1zyzy+1z
6 5 eqeq2i x=x=z|1zyzy+1z
7 eleq2 x=1x1
8 eleq2 x=y+1xy+1
9 8 raleqbi1dv x=yxy+1xyy+1
10 7 9 anbi12d x=1xyxy+1x1yy+1
11 6 10 sylbir x=z|1zyzy+1z1xyxy+1x1yy+1
12 nnssre
13 5 12 eqsstrri z|1zyzy+1z
14 1nn 1
15 peano2nn yy+1
16 15 rgen yy+1
17 14 16 pm3.2i 1yy+1
18 13 17 pm3.2i z|1zyzy+1z1yy+1
19 4 11 18 intabs x|x1xyxy+1x=x|1xyxy+1x
20 3anass x1xyxy+1xx1xyxy+1x
21 20 abbii x|x1xyxy+1x=x|x1xyxy+1x
22 21 inteqi x|x1xyxy+1x=x|x1xyxy+1x
23 dfnn2 =x|1xyxy+1x
24 19 22 23 3eqtr4ri =x|x1xyxy+1x