Step |
Hyp |
Ref |
Expression |
1 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω |
2 |
|
fvelrnb |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω → ( 𝐴 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝐴 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ↔ ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 ) |
4 |
|
ovex |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ∈ V |
5 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
6 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 + 1 ) = ( 𝑥 + 1 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑧 = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) → ( 𝑧 + 1 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ) |
8 |
5 6 7
|
frsucmpt2 |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ∈ V ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ) |
9 |
4 8
|
mpan2 |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ) |
10 |
|
peano2 |
⊢ ( 𝑦 ∈ ω → suc 𝑦 ∈ ω ) |
11 |
|
fnfvelrn |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω ∧ suc 𝑦 ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ) |
12 |
1 10 11
|
sylancr |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ) |
13 |
|
df-nn |
⊢ ℕ = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) |
14 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
15 |
13 14
|
eqtri |
⊢ ℕ = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
16 |
12 15
|
eleqtrrdi |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ suc 𝑦 ) ∈ ℕ ) |
17 |
9 16
|
eqeltrrd |
⊢ ( 𝑦 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
18 |
|
oveq1 |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) = ( 𝐴 + 1 ) ) |
19 |
18
|
eleq1d |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 → ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) + 1 ) ∈ ℕ ↔ ( 𝐴 + 1 ) ∈ ℕ ) ) |
20 |
17 19
|
syl5ibcom |
⊢ ( 𝑦 ∈ ω → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 → ( 𝐴 + 1 ) ∈ ℕ ) ) |
21 |
20
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ω ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ 𝑦 ) = 𝐴 → ( 𝐴 + 1 ) ∈ ℕ ) |
22 |
3 21
|
sylbi |
⊢ ( 𝐴 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) → ( 𝐴 + 1 ) ∈ ℕ ) |
23 |
22 15
|
eleq2s |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) |