| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2z | ⊢ ( 𝐵  ∈  ℤ  →  ( 𝐵  +  1 )  ∈  ℤ ) | 
						
							| 2 | 1 | ad2antrl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐵  ∈  ℤ  ∧  𝐴  ≤  𝐵 ) )  →  ( 𝐵  +  1 )  ∈  ℤ ) | 
						
							| 3 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | zre | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | lep1 | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ≤  ( 𝐵  +  1 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ≤  ( 𝐵  +  1 ) ) | 
						
							| 7 |  | peano2re | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  +  1 )  ∈  ℝ ) | 
						
							| 8 | 7 | ancli | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ ) ) | 
						
							| 9 |  | letr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  ( 𝐵  +  1 ) )  →  𝐴  ≤  ( 𝐵  +  1 ) ) ) | 
						
							| 10 | 9 | 3expb | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  ( 𝐵  +  1 )  ∈  ℝ ) )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  ( 𝐵  +  1 ) )  →  𝐴  ≤  ( 𝐵  +  1 ) ) ) | 
						
							| 11 | 8 10 | sylan2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  ( 𝐵  +  1 ) )  →  𝐴  ≤  ( 𝐵  +  1 ) ) ) | 
						
							| 12 | 6 11 | mpan2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  →  𝐴  ≤  ( 𝐵  +  1 ) ) ) | 
						
							| 13 | 3 4 12 | syl2an | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ≤  𝐵  →  𝐴  ≤  ( 𝐵  +  1 ) ) ) | 
						
							| 14 | 13 | impr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐵  ∈  ℤ  ∧  𝐴  ≤  𝐵 ) )  →  𝐴  ≤  ( 𝐵  +  1 ) ) | 
						
							| 15 | 2 14 | jca | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( 𝐵  ∈  ℤ  ∧  𝐴  ≤  𝐵 ) )  →  ( ( 𝐵  +  1 )  ∈  ℤ  ∧  𝐴  ≤  ( 𝐵  +  1 ) ) ) | 
						
							| 16 |  | breq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ≤  𝑥  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( 𝐵  ∈  { 𝑥  ∈  ℤ  ∣  𝐴  ≤  𝑥 }  ↔  ( 𝐵  ∈  ℤ  ∧  𝐴  ≤  𝐵 ) ) | 
						
							| 18 | 17 | anbi2i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  { 𝑥  ∈  ℤ  ∣  𝐴  ≤  𝑥 } )  ↔  ( 𝐴  ∈  ℤ  ∧  ( 𝐵  ∈  ℤ  ∧  𝐴  ≤  𝐵 ) ) ) | 
						
							| 19 |  | breq2 | ⊢ ( 𝑥  =  ( 𝐵  +  1 )  →  ( 𝐴  ≤  𝑥  ↔  𝐴  ≤  ( 𝐵  +  1 ) ) ) | 
						
							| 20 | 19 | elrab | ⊢ ( ( 𝐵  +  1 )  ∈  { 𝑥  ∈  ℤ  ∣  𝐴  ≤  𝑥 }  ↔  ( ( 𝐵  +  1 )  ∈  ℤ  ∧  𝐴  ≤  ( 𝐵  +  1 ) ) ) | 
						
							| 21 | 15 18 20 | 3imtr4i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  { 𝑥  ∈  ℤ  ∣  𝐴  ≤  𝑥 } )  →  ( 𝐵  +  1 )  ∈  { 𝑥  ∈  ℤ  ∣  𝐴  ≤  𝑥 } ) |