Metamath Proof Explorer


Theorem peano2uz2

Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004)

Ref Expression
Assertion peano2uz2 A B x | A x B + 1 x | A x

Proof

Step Hyp Ref Expression
1 peano2z B B + 1
2 1 ad2antrl A B A B B + 1
3 zre A A
4 zre B B
5 lep1 B B B + 1
6 5 adantl A B B B + 1
7 peano2re B B + 1
8 7 ancli B B B + 1
9 letr A B B + 1 A B B B + 1 A B + 1
10 9 3expb A B B + 1 A B B B + 1 A B + 1
11 8 10 sylan2 A B A B B B + 1 A B + 1
12 6 11 mpan2d A B A B A B + 1
13 3 4 12 syl2an A B A B A B + 1
14 13 impr A B A B A B + 1
15 2 14 jca A B A B B + 1 A B + 1
16 breq2 x = B A x A B
17 16 elrab B x | A x B A B
18 17 anbi2i A B x | A x A B A B
19 breq2 x = B + 1 A x A B + 1
20 19 elrab B + 1 x | A x B + 1 A B + 1
21 15 18 20 3imtr4i A B x | A x B + 1 x | A x