Metamath Proof Explorer


Theorem peano2uz2

Description: Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004)

Ref Expression
Assertion peano2uz2 ABx|AxB+1x|Ax

Proof

Step Hyp Ref Expression
1 peano2z BB+1
2 1 ad2antrl ABABB+1
3 zre AA
4 zre BB
5 lep1 BBB+1
6 5 adantl ABBB+1
7 peano2re BB+1
8 7 ancli BBB+1
9 letr ABB+1ABBB+1AB+1
10 9 3expb ABB+1ABBB+1AB+1
11 8 10 sylan2 ABABBB+1AB+1
12 6 11 mpan2d ABABAB+1
13 3 4 12 syl2an ABABAB+1
14 13 impr ABABAB+1
15 2 14 jca ABABB+1AB+1
16 breq2 x=BAxAB
17 16 elrab Bx|AxBAB
18 17 anbi2i ABx|AxABAB
19 breq2 x=B+1AxAB+1
20 19 elrab B+1x|AxB+1AB+1
21 15 18 20 3imtr4i ABx|AxB+1x|Ax