Metamath Proof Explorer


Theorem lep1

Description: A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006)

Ref Expression
Assertion lep1 ( 𝐴 ∈ ℝ → 𝐴 ≤ ( 𝐴 + 1 ) )

Proof

Step Hyp Ref Expression
1 ltp1 ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) )
2 peano2re ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )
3 ltle ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) → ( 𝐴 < ( 𝐴 + 1 ) → 𝐴 ≤ ( 𝐴 + 1 ) ) )
4 2 3 mpdan ( 𝐴 ∈ ℝ → ( 𝐴 < ( 𝐴 + 1 ) → 𝐴 ≤ ( 𝐴 + 1 ) ) )
5 1 4 mpd ( 𝐴 ∈ ℝ → 𝐴 ≤ ( 𝐴 + 1 ) )