Metamath Proof Explorer


Theorem lep1

Description: A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006)

Ref Expression
Assertion lep1
|- ( A e. RR -> A <_ ( A + 1 ) )

Proof

Step Hyp Ref Expression
1 ltp1
 |-  ( A e. RR -> A < ( A + 1 ) )
2 peano2re
 |-  ( A e. RR -> ( A + 1 ) e. RR )
3 ltle
 |-  ( ( A e. RR /\ ( A + 1 ) e. RR ) -> ( A < ( A + 1 ) -> A <_ ( A + 1 ) ) )
4 2 3 mpdan
 |-  ( A e. RR -> ( A < ( A + 1 ) -> A <_ ( A + 1 ) ) )
5 1 4 mpd
 |-  ( A e. RR -> A <_ ( A + 1 ) )