Metamath Proof Explorer


Theorem ltm1

Description: A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006)

Ref Expression
Assertion ltm1 ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) < 𝐴 )

Proof

Step Hyp Ref Expression
1 0lt1 0 < 1
2 0re 0 ∈ ℝ
3 1re 1 ∈ ℝ
4 ltsub2 ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 1 ↔ ( 𝐴 − 1 ) < ( 𝐴 − 0 ) ) )
5 2 3 4 mp3an12 ( 𝐴 ∈ ℝ → ( 0 < 1 ↔ ( 𝐴 − 1 ) < ( 𝐴 − 0 ) ) )
6 1 5 mpbii ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) < ( 𝐴 − 0 ) )
7 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
8 7 subid1d ( 𝐴 ∈ ℝ → ( 𝐴 − 0 ) = 𝐴 )
9 6 8 breqtrd ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) < 𝐴 )