Metamath Proof Explorer


Theorem subid1d

Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis negidd.1 ( 𝜑𝐴 ∈ ℂ )
Assertion subid1d ( 𝜑 → ( 𝐴 − 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 subid1 ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 )
3 1 2 syl ( 𝜑 → ( 𝐴 − 0 ) = 𝐴 )