Metamath Proof Explorer


Theorem rabex

Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996)

Ref Expression
Hypothesis rabex.1 𝐴 ∈ V
Assertion rabex { 𝑥𝐴𝜑 } ∈ V

Proof

Step Hyp Ref Expression
1 rabex.1 𝐴 ∈ V
2 rabexg ( 𝐴 ∈ V → { 𝑥𝐴𝜑 } ∈ V )
3 1 2 ax-mp { 𝑥𝐴𝜑 } ∈ V