Metamath Proof Explorer


Theorem rabex

Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996)

Ref Expression
Hypothesis rabex.1
|- A e. _V
Assertion rabex
|- { x e. A | ph } e. _V

Proof

Step Hyp Ref Expression
1 rabex.1
 |-  A e. _V
2 rabexg
 |-  ( A e. _V -> { x e. A | ph } e. _V )
3 1 2 ax-mp
 |-  { x e. A | ph } e. _V