Metamath Proof Explorer


Theorem addgt0d

Description: Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
addgt0d.3 φ0<A
addgt0d.4 φ0<B
Assertion addgt0d φ0<A+B

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 addgt0d.3 φ0<A
4 addgt0d.4 φ0<B
5 0red φ0
6 5 1 3 ltled φ0A
7 1 2 6 4 addgegt0d φ0<A+B