Metamath Proof Explorer


Theorem addgegt0d

Description: Addition of nonnegative and positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
addgegt0d.3 φ0A
addgegt0d.4 φ0<B
Assertion addgegt0d φ0<A+B

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 addgegt0d.3 φ0A
4 addgegt0d.4 φ0<B
5 addgegt0 AB0A0<B0<A+B
6 1 2 3 4 5 syl22anc φ0<A+B